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Recently Brutman and Passow considered Newman-type rational interpolation
to |x| induced by arbitrary sets of symmetric nodes in [&1, 1] and showed that
under mild restrictions on the location of the interpolation nodes, the correspond-
ing sequence of rational interpolants converges to |x|. They also studied the special
case where the interpolation nodes are the roots of the Chebyshev polynomials and
proved that for this case the exact order of approximation is O(1�n log n), which,
in view of Werner's result, is the same as for rational interpolation at equidistant
nodes. In the present note we consider the set of interpolation nodes obtained by
adjusting the Chebyshev roots to the interval [0, 1] and then extending this set to
[&1, 1] in a symmetric way. We show that this procedure improves the quality of
approximation, namely we prove that in this case the exact order of approximation
is O(1�n2). � 1998 Academic Press

1. INTRODUCTION

The function |x| has been the focus of much research in approximation
theory over the years. Its fundamental role in polynomial approximation is
well illustrated by Lebesgue's proof of the Weierstrass approximation
theorem, which is based solely on the fact that a single function |x| can be
approximated. However, as was shown by Bernstein [1], the order of the
best uniform approximation of |x| by polynomials is only O(n&1).

In contrast to this, Newman [4] demonstrated that rational approx-
imation to |x| is much more favorable, namely |x| may be approximated
uniformly by rational functions at an exponential rate. Newman's result
generated a great deal of research, much of which focused on the problem
of sharpening the asymptotic results for the error in the best rational
approximation. The most recent result in this direction is the proof of the
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so-called ``8'' conjecture by Stahl. (See [6], where the main result is presented
and an extensive historical review is given.)

In [2] Brutman and Passow considered Newman-type rational approxi-
mation induced by arbitrary sets of interpolation points. Let X=[0<x (n)

1

<x (n)
2 < } } } <x (n)

n �1] be a set of n distinct points in (0, 1] and let p(x)=
>n

k=1 (x+x (n)
k ). (In the sequel, when there is no possibility for confusion,

the superscript (n) will be omitted.) The rational function, corresponding
to the set X is defined by

rn(X; x)=x
p(x)& p(&x)
p(x)+ p(&x)

.

It can be easily verified that rn(X; x) interpolates |x| at the following set of
2n+1 points: [&xn , ..., &x1 , 0, x1 , ..., xn]. Since the rn(X; x) as well as |x|
are even functions, the study of the approximation error en(X; x)=
|x|&rn(X; x) may be restricted to the interval [0, 1], where it can be
represented in the form

en(X; x)=
2xhn(X; x)

1+hn(X; x)
, 0�x�1, (1)

where

hn(X; x)=
p(&x)

p(x)
= `

n

k=1

xk&x
xk+x

. (2)

In the sequel we will use the following general estimates which were proved
in [2]:

Statement 1.1. Let S1=S (n)
1 (X )=�n

k=1 x (n)
k . Then

|en(X; x)|�
2

S1

, &1�x�1. (3)

Statement 1.2. Let An=An(X )=1��n
k=1 xk

&1. Then

|en(X; x)|�1�An , x # [&x1 , x1]. (4)

In [3] Brutman and Passow studied the special case of interpolation
nodes coinciding with the roots of the Chebyshev polynomial of even
degree T2n(x), namely

X=T� :=[cos((2k&1) ?�(4n))]n
k=1 .
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They proved that the exact order of approximation of |x| by rn(T� ; x) is
O(1�n log n), which, in view of Werner's result [7], is the same as for
rational interpolation at equidistant nodes.

In the present paper we consider the set of nodes obtained by adjusting
the Chebyshev roots ! (n)

k =cos((2k&1) ?�(2n)), k=1, 2, ..., n to the interval
[0, 1], namely

X=T :=[xk= 1
2 (1+! (n)

n&k+1)=sin2((2k&1)?�(4n))]n
k=1 . (5)

We show that this procedure improves the quality of approximation, namely
we prove that in this case the exact order of approximation is O(1�n2).

Finally we would like to mention that the method of our proof is rather
general and may be applied to other specific sets of interpolation points.

2. RESULTS

Consider the case of the adjusted Chebyshev nodes (5). Note first that
since S1(T )=n�2, the general formula (3) implies |en(T ; x)|�4�n. This
estimate is rather conservative, as we will show. Our purpose is to find an
exact order of approximation of |x| by rn(T ; x) and to this end we have to
study thoroughly the behavior of the function hn(T ; x). Since |x| and rn(T ; x)
are even functions in [&1, 1] we can restrict ourselves to x # [0, 1]. For this
interval, as can be easily verified, the function hn(T ; x) may be represented in
the form

hn(T ; x)=
(&1)n Tn(2x&1)

Tn(2x+1)
, x # [0, 1]. (6)

The following estimate holds:

Lemma 2.1. For any x # [x1 , 1] and n=2, 3, ...

|hn(T ; x)|< 1
2 . (7)

Proof. It follows from (6) that for x # [x1 , 1]

|hn(T ; x)|�
1

Tn(2x+1)
�

1
Tn(2x1+1)

:=
1

Tn(:n)
, (8)

where

:n :=2x1+1=2&cos
?
2n

.
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In the sequel we will use the following well-known representation of the
Chebyshev polynomials [5]:

Tn(x)= 1
2 [(x+- x2&1)n+(x&- x2&1)n]. (9)

Then from (8) we obtain

|hn(T ; x)|�
2

(:n+- :n
2&1)n+(:n&- :n

2&1)n

<
2

(:n+- :n
2&1)n

. (10)

We want to show next that the sequence [Dn]�
n=1 defined by

Dn :=(:n+- :n
2&1)n, n=1, 2, ...,

is strictly monotone increasing. To this end we put x=?�2n and prove that

D(x)=[:(x)+- :2(x)&1]?�2x, where :(x)=2&cos x,

is a decreasing function of x for x # (0, ?�2].
Since D(x)>0, it suffices to verify that the logarithmic derivative of D(x)

is negative, namely that

D$(x)
D(x)

=&
?

2x2 ln[:(x)+- :2(x)&1]+
?:$(x)

2x - :2(x)&1
<0, x # (0, ?�2],

which is equivalent to proving that

L(x) :=&ln[:(x)+- :2(x)&1]+x
:$(x)

- :2(x)&1
<0, x # (0, ?�2].

(11)

But L(0)=limx � 0 L(x)=0 and therefore in order to prove (11) it suffices
to verify that the following inequality holds:

L$(x)=x _ :$(x)

- :2(x)&1&
$
<0, x # (0, ?�2].

This last inequality is equivalent to the following, obviously valid inequality

:"(x)[:2(x)&1]&:(x)[:$(x)]2=(&2)[1&cos x]2<0, x # (0, ?�2].

This proves the monotonicity of the sequence Dn . It remains to note that
D2=4.4622... and the result follows from (10). K
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Now we are in a position to prove our main result.

Theorem 2.2. For any x # [&1, 1] and n=2, 3, ... the following estimate
holds:

|en(T; x)|<
8

e2(n2&1)
. (12)

Proof. As before we can restrict our analysis to x�0. Consider first the
case x # [0, x1]=[0, sin2(?�(4n))]. By applying the general estimate (4)
and taking into account the following identity (see, e.g., [5])

An(T ) := :
n

k=1

1
xk

= :
n

k=1

1
sin2((2k&1)�4n)?

=2n2,

we get

|en(T, x)|�
1

2n2 , x # [0, x1]. (13)

Now let us consider the error of approximation in the interval [x1 , 1].
Applying (1), (6), and the lemma we obtain for n�2

|en(T ; x)|�
2x |hn(T ; x)|
1&|hn(T ; x)|

<4x |hn(T ; x)|=
4x |Tn(2x&1)|

Tn(2x+1)
�

4x
Tn(2x+1)

.

(14)

Let Fn(x) :=x�Tn(2x+1). Then by applying the transformation t=2x+1
and using once again the representation (9), we find

max
x1�x�1

Fn(x)= max
:n�t�3

t&1
2Tn(t)

< max
:n�t�3

t&1

(t+- t2&1)n
:= max

:n�t�3
Gn(t).

(15)

An easy computation reveals that for n�2 the function Gn(t) attains its
maximal value on the interval [:n , 3] at the point tmax=;n :=1+2�(n2&1).
Moreover, by applying the method used in proving the monotonicity of
the sequence Dn in Lemma 2.1, one can verify that the sequence (;n+
- ;2

n&1)n]�
n=2 monotonically decreases to e2. Therefore we have

max
:n�t�3

Gn(t)=Gn(;n)<
2

e2(n2&1)
, n=2, 3, ... . (16)
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Combining (14)�(16) yields

|en(T ; x)|<
8

e2(n2&1)
, x # [x1 , 1], n=2, 3, ... . (17)

Comparison of (13) and (17) completes the proof of the theorem. K

Finally we show that the estimate (12) is sharp, namely the following
result holds:

Theorem 2.3. Let x*=1�(4n2). Then

|en(T ; x*)|�
C
n2 , n�n0 . (18)

Proof. Note first that for n�1, x* # [0, x1] and since in this interval
0�hn(T ; x)�1, we can write

4n2 |en(T ; x*)|=
en(T ; x*)

x*
=

2hn(T ; x*)
1+hn(T ; x*)

�hn(T ; x*).

Thus in order to prove (18) we have to show that the sequence [Rn]�
n=1

defined by

Rn :=
1

hn(T ; x*)
=

Tn(2x*+1)
(&1)n Tn(2x*&1)

:=
Pn

Qn
(19)

is bounded. To this end note first that, as may be easily verified,

Tn(2x&1)=T2n(- x), x�0,

and thus

Qn=(&1)n T2n(- x*)=(&1)n cos \2n arc cos
1

2n+� cos 1, as n � �.

Therefore it suffices to consider the behavior of the numerator of (19),
which in view of (9) may be represented in the form

Pn= 1
2 [(t*+- (t*)2&1)n+(t*+- (t*)2&1)n],

where t*=2x*+1=1+1�2n2. A routine computation yields

lim
n � �

Pn=
1
2 \e+

1
e+ ,

and the result follows. K
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